FANDOM


Triangolo-Equilatero

Tavaline võrdkülgne kolmnurk

Võrdkülgne kolmnurk ehk korrapärane kolmnurk on kolmnurk, mille kõik kolm külge on võrdse pikkusega. Samuti on võrdsed kõik selle kolmnurga nurgad (kõik 60°), kõrgused, nurgapoolitajad ja mediaanid ning nad lõikuvad kõik ühes punktis, mis on ühtlasi nii mediaanide, nurgapoolitajate kui ka külgede keskristsirgete lõikepunkt.

Võrdkülgse kolmnurga ümber- ja siseringjoone keskpunkt langeb kokku ja asub mediaanide lõikepunktis.

Võrdkülgse kolmnurga siseringjoone raadius on kolmandik mediaani pikkusest, ümberringjoone lõikepunkt on kaks kolmandikku mediaani pikkusest.

Valemid Edit

Võrdkülgse kolmnurga kõrgus avaldub külje a kaudu:

$ h=\frac{\sqrt{3}}{2}a $

Võrdkülgse kolmnurga pindala:

$ S \, = \, \frac{a^2\sqrt{3}}{4} $

Ümbermõõt:

$ P \, = \, 3 \cdot a $

Välisringjoone raadius:

$ r_V \, = \, \frac{\sqrt{3}}{3}a $

Siseringjoone raadius:

$ r_S \, = \, \frac{\sqrt{3}}{6}a = \frac 1 2 \cdot r_V $